
Comparing Automated Planning Approaches for
Model Inconsistency Resolution

Jorge Pinna Puissanta,∗, Ragnhild Van Der Straetena,b, Tom Mensa

aUniversity of Mons, 20 Place du Parc, 7000 Mons, Belgium
bVrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium

Abstract

A wide variety of approaches has been proposed to detect and resolve software
model inconsistencies. In this article, we present a new type of approach that
uses the artificial intelligence technique of automated planning for the purpose of
resolving software model inconsistencies. We objectively compare two different
variants of automated planning, progression and regression planning, and we
discuss how to improve the proposed techniques further.

Keywords: automated planning, software modeling, inconsistency
management, model evolution, comparison

1. Introduction

One of the main challenges in model-driven software engineering (MDE) is
how to deal with evolving models, and how to provide more automated mech-
anisms to support this evolution [1]. A particular point of attention is how to
manage inconsistencies in software models [2]. Such model inconsistencies are
inevitable, because a (software) system description is composed of a wide variety
of diverse models, some of which are developed and maintained in parallel. Our
research does not focus on the activity of model inconsistency detection, that is
becoming well-established. Instead, we address the problem of model inconsis-
tency resolution. In particular, we focus on more automated ways to resolve a
selection of previously identified model inconsistencies through the generation
of so-called resolution plans.

To do this, we propose to use the technique of Automated Planning coming
from the Artificial Intelligence domain. This technique allows the generation
of possible resolution plans without the need of manually writing resolution
rules. In this article, we evaluate two different planning approaches, progression
planning and regression planning. We perform an objective comparison of both

∗Corresponding author: Avenue du champ de Mars 6, 7000 Mons, +32 65 37 33 21
Email addresses: jorge.pinnapuissant@umons.ac.be (Jorge Pinna Puissant),

rvdstrae@vub.ac.be (Ragnhild Van Der Straeten), tom.mens@umons.ac.be (Tom Mens)

Preprint submitted to Elsevier January 9, 2012



planning variants to determine which approach is most promising, and we dis-
cuss on how to further advance the proposed technique and the field of model
inconsistency resolution.

2. Related work

Several state-of-the-art approaches on inconsistency resolution exist. In our
previous work [3] we specified resolution rules manually, which is an error-prone
process. Automatic generation of inconsistency resolution actions aim to re-
solve this problem. Nentwich et al. [4] achieve this by generating resolution
actions automatically from the inconsistency detection rules. The execution of
these rules, however, only resolves one inconsistency at a time. As recognised
by the authors, this causes problems when inconsistencies and their resolution
are interdependent. In [5] we proposed a formal approach based on graph trans-
formation to analyse these interdependencies.

Xiong et al. [6] define a language to specify inconsistency rules and the
possibilities to resolve the inconsistencies. This requires inconsistency rules to
be annotated with resolution information. Almeida da Silva et al. [7] propose
an approach to generate resolution plans for inconsistent models, by extending
inconsistency detection rules with information about the causes of the inconsis-
tency, and by using manually written functions that generate resolution actions.
In both approaches inconsistency detection rules are polluted with resolution in-
formation.

Instead of explicitly defining or generating resolution rules, a set of models
satisfying a set of consistency rules can be generated and presented to the user.
Egyed et al. [8] define such an approach for resolving inconsistencies in UML
models. Given an inconsistency and using choice generation functions, possible
resolution choices, i.e., possible consistent models, are generated. The choice
generation functions depend on the modelling language, i.e., they take into
account the syntax of the modelling language, but they only consider the impact
of one consistency rule at a time. Furthermore these choice generation functions
need to be implemented manually.

3. Automated Planning

In state-of-the-art approaches on inconsistency resolution, resolution rules
or resolution generators need to be implemented manually and only one incon-
sistency at a time is considered [3, 4, 5, 6, 7, 8]. Our aim is to tackle the problem
of inconsistency resolution by generating possible resolution plans without the
need of manually writing resolution rules or writing any procedures that gener-
ate choices. The approach needs to generate valid models with respect to the
modelling language and needs to enable the resolution of multiple inconsisten-
cies at once and to perform the resolution in a reasonable time. In addition, the
approach needs to be generic, i.e., it needs to be easy to apply it to different
modelling languages. We explore Automated Planning, a technique coming from
artificial intelligence, for this purpose [9].

2



Automated planning aims to create plans, i.e., sequences of primitive actions
that lead from an initial state to a state meeting a specific predefined goal. To
accomplish this, the planner decomposes the world into logical conditions and
represents a state as a conjunction of literals. As input the planner needs a
planning environment, composed of an initial state, a desired goal and a set
of primitive actions that can be performed. The initial state represents the
current state of the world. The goal is a partially specified state that describes
the world that we would like to obtain. The actions express how each element
of a state can be changed. The actions are composed of a precondition and
an effect. The effect of an action is executed if and only if the precondition is
satisfied. In general a planning approach consists of a representation language
used to describe the problem and an algorithm representing the mechanism to
solve the problem.

One way to solve planning problems consists in translating them into a
satisfiability problem and using a model checker [10]. A more direct approach
consists in generating a search space and looking for a solution in this space.
Depending on how the state space is traversed, we can distinguish between
progression planning and regression planning. Progression planning performs
a forward search that starts in the initial state and tries to find a sequence of
actions that reaches a goal state. Regression planning starts in the goal state and
searches backwards to find a sequence of actions that reach the initial state. In
this article, we will compare both approaches for the purpose of finding a model
inconsistency resolution plan.

4. Planning for Inconsistency Resolution

There is a wide variety of modeling languages, domain-independent as well
as domain-specific. As a consequence, there are many different types of, often
interrelated, models that can suffer from many kinds of inconsistencies, such as
structural and behavioural inconsistencies.

For our running example, we focus on one type of model only, namely class
diagrams, and we focus on structural model inconsistencies. Figure 1 illustrates
a simple class diagram containing two structural inconsistency occurrences of
type “Inherited Cyclic Composition” (ICC) and two occurrences of type “Cyclic
Inheritance” (CI) [11]. An ICC inconsistency occurs when a composition rela-
tionship and an inheritance chain form a cycle that would produce an infinite
containment of objects upon instantiation. A first occurrence ICC1 of this type
appears in the inheritance chain Vehicle ← Boat ← Amphibious Vehicle.
The second inconsistency ICC2 occurs in the inheritance chain Vehicle← Car

← Amphibious Vehicle.
A CI inconsistency arises when an inheritance chain forms a cycle. A first

occurrence CI1 can be observed in the inheritance cycle involving the classes
Vehicle, Boat and Amphibious Vehicle. The second occurrence CI2 occurs
in the inheritance cycle involving the classes Vehicle, Car and Amphibious

Vehicle.

3



Vehicle

Bicycle CarMotorcycle BoatAircraft

Amphibious 
Vehicle 1..*

Helicopter Airplane

Figure 1: Class diagram with 4 inconsistency occurrences, inspired by [11].

All four inconsistency occurrences share two of the three classes that com-
pose their respective inheritance chains: Vehicle and Amphibious Vehicle.
Due to this overlap, the same resolution action can resolve more than one in-
consistency occurrence. For example, removing the composition relationship
between Vehicle and Amphibious Vehicle solves the two inconsistency occur-
rences ICC1 and ICC2. Removing the inheritance relationship between Boat

and Amphibious Vehicle solves the two inconsistency occurrences ICC1 and
CI1. This clearly illustrates that, in order to resolve model inconsistencies in
an optimal way, it is important to consider all inconsistencies simultaneously.

Using the example of Figure 1, we will illustrate how to create a sequence
of inconsistency resolution actions with two automated planning approaches:
progression planning and regression planning. In both cases, we require as
input an initial state (the inconsistent model), a set of possible actions (that
change the model) and a desired goal (negation of inconsistencies, see further).
Planning requires logic conditions as input, so the whole model environment
(e.g. model, meta-model, detection rules) is translated into a conjunction of
logic literals. In this section, we will use Prolog syntax for explaining how
automated planning works.

The (simplified) metamodel for class diagrams is expressed below as a set
of logic literals. Logic variables start with an uppercase letter. Each model
element is referred to by a unique Id.

class(Id, Name).

generalisation(Id, Label, Child_class, Parent_class).

association_end(Id, Class, Role, UpperMult, LowerMult, Composite).

association(Id, Name, Ass_end_1, Ass_end_2).

The initial state is expressed as a conjunction of literals, and represents
the current world. In our case the initial state will be the inconsistent model.
The initial state can be represented either by using the complete model, or by
using a partial model that contains only those elements that are involved in
one or more inconsistency occurrences. Below is an example of a partial model
(conforming to the aforementioned metamodel), containing only the elements
that are involved in the inconsistency occurrences, shown in the shaded part of
Figure 1.

4



class(c1, vehicle).

class(c5, boat).

class(c6, car).

class(c9, amphibious_vehicle).

generalisation(g4, label4, c5, c1).

generalisation(g5, label5, c6, c1).

generalisation(g8, label8, c9, c5).

generalisation(g9, label9, c9, c6).

generalisation(g10, label10, c1, c9).

association_end(ae1, c9, role1, star, one, non).

association_end(ae2, c1, role2, one, one, yes).

association(a1, ass1, ae1, ae2).

The set of actions corresponds to the elementary operations (create, modify
and delete) of the different types of model elements that can be derived from
the metamodel. For each action, a precondition needs to specify the conditions
that must hold before the execution of the action. As an example, the logic rule
can specified below gives the precondition for modify Association Name.

can(modify_Association_Name(Id, Name, NewName),

[association(Id, Name, Ass_end_1, Ass_end_2)]) :-

id(Id),

string(Name),

string(NewName),

NewName \== Name.

The effects of an action are relationships that express which model elements
are added to or deleted from the current state. As an example, the logic rules
adds and deletes below show this for the action modify Association Name.

adds(modify_name_Association(Id, _Name, NewName),

[association(Id, NewName, Ass_end_1, Ass_end_2)]).

deletes(modify_name_Association(Id, Name, _NewName),

[association(Id, Name, Ass_end_1, Ass_end_2)]).

The desired goal is a partially specified state, represented as a conjunc-
tion of literals using logic quantification. It specifies the objective we want to
reach, namely the absence of model inconsistencies. To achieve this we can
use two alternatives: (1) the negation of the inconsistency occurrences; or (2)
the negation of the inconsistency detection rules. An inconsistency detection
rule is a conjunction of logic literals representing a pattern that, if matched
in the model, detects inconsistency occurrences. Below we give an example of
the “Inherited Cyclic Composition” detection rule. It only specifies an inheri-
tance chain involving three classes because the planner syntax does not allow
to express transitive closure to make the rule more generic.

[generalisation(G1, Label1, C, A),

5



generalisation(G2, Label2, B, C),

association(A1, Name, AE1, AE2),

association_end(AE1, B, Role1, Upper1, one, Composite1),

association_end(AE2, A, Role2, Upper2, Lower2, yes)]

One of the two occurrences in the model that match this detection rule is
given below.

generalisation(g4, label4, c5, c1).

generalisation(g8, label8, c9, c5).

association(a1, ass1, ae1, ae2).

association_end(ae1, c9, role1, star, one, non).

association_end(ae2, c1, role2, one, one, yes).

Using the negation of the inconsistency occurrences in the desired goal will
only be able to resolve inconsistency occurrences that have already been identi-
fied previously. Using negation of inconsistency detection rules has the advan-
tage that it can be used to detect and resolve inconsistency occurrences at the
same time, but suffers from scalability problems (see further). In both alter-
natives logic negation is used to express the absence of inconsistencies in the
resulting model. This implies that we need a planning language that allows the
use of disjunction and negative literals in the goal.

A plan is a sequence of actions that transforms the initial model into a model
that satisfies the desired goal (i.e., a consistent model). A plan is generated au-
tomatically by the planning algorithm, without relying on any domain-specific
information. Moreover, the generated resolution plan does not lead to ill-formed
models (that do not conform to their metamodel) as long as all metamodel con-
straints are given as part of the problem specification. Two complete resolution
plans, containing only two actions, that solve the four inconsistency occurrences
of the motivating example are given below:

Resolution plan 1 :

1. delete_Generalisation(g5, label5, c6, c1)

2. delete_Generalisation(g4, label4, c5, c1)

Resolution plan 2 :

1. delete_Generalisation(g10, label10, c1, c9)

2. modify_lower_Association_End(ae1, 1, 0)

5. Comparative study

5.1. Choice of planners

Since the goal of our article is to compare the performance of progression
planning and regression planning for the purpose of automated model inconsis-
tency resolution, we need to select a progression planner and regression planner
that are most appropriate for our needs.

6



To choose a progression planner, we surveyed the state-of-the-art on exist-
ing planner tools. In 1971, Fikes et al [12] developed a formal planning rep-
resentation language called STRIPS. In 1989, Pednault [13] developed a more
advanced and expressive language called ADL. It allows to use negative literals
and disjunction and applies the open world principle. This principle states that
unspecified literals are considered as unknown instead of being assumed false.

PDDL [14] is a generic language (Planning Domain Definition Language)
allowing to represent the syntax of STRIPS, ADL and other languages. Even
if PDDL covers all the functionalities of these languages, the majority of plan-
ners only implement the STRIPS subset [10]. An important constraint for us is
that the planning language needs to support disjunction and negative literals,
because the desired goal is expressed as a negation of inconsistency occurrences
or rules (see section 4). FF (for “Fast-Forward Planning System” [15]) is a
heuristic state-space progression planner, and the only one we found to be able
to properly deal with negation. To be precise, FF supports the PDDL language
with full ADL subset support, including positive and negative literals, conjunc-
tion and disjunction, negation, typing, and logic quantification in the desired
goal. Therefore, FF is the tool that we have selected for our experiments.

To choose a regression planner, we again surveyed the state-of-the-art in
planner tools, but did not find a readily available regression planner that fit our
needs. Therefore, based on the algorithms explained in [16] we started imple-
menting our own regression planner in Prolog, because this logic programming
language provides more expressiveness than FF. We baptised the regression
planner we implemented Badger.

5.2. Experimental setup

Our experimental comparison aims to assess which type of planning algo-
rithms relying on state space search is most appropriate (w.r.t. expressiveness,
scalability and other important factors) to be used for resolving inconsistencies
in software models. We have carried out a number of experiments with both
types of planners presented in subsection 5.1.

All experiments have been performed using a 64-bit Apple MacBook with 2.4
GHz Intel Core 2 Duo processor and 4GB RAM, 2.9GB of which were available
for the experiments. In order to remove noise, each experiment was executed
10 times and the average time and standard deviation was computed.

For both considered planners, the generated resolution plans were always
complete (i.e., they removed all occurrences of all inconsistencies that were taken
into consideration). Typically, there are many ways in which inconsistencies can
be resolved. Since both considered planners look for the shortest path in the
search space, they always provide a resolution strategy that is minimal in the
number of actions required to resolve all inconsistencies. As we will discuss in
future work, other resolution strategies can be envisaged.

Even if the generated plan removes all selected inconsistency occurrences, it
can still introduce new and different inconsistencies in the model. In section 7
we will discuss this issue in more detail.

7



5.3. Feasibility study

Our first experiments consists of assessing whether the use of both considered
planners is at all feasible. We explored the impact of different ways to provide
input to the planner, as explained in section 4. The initial state can be specified
by giving a complete model or a partial model containing only those elements
that are involved in the inconsistency occurrences (shaded part of Figure 1).
The desired goal can either contain a negation of the inconsistency detection
rules or a negation of the inconsistency occurrences.

Table 1: Comparison of timing results on the case study of section 4 using both
planners. Time is expressed in seconds and the standard deviation is mentioned
after the ± sign.

Experiment Initial state: Desired goal: Average time & Average time
number Model Negation of for FF for Badger

inconsistency (in seconds) (in seconds)
1 complete rules out of memory N/A
2 partial rules out of memory N/A
3 complete occurrences 14.84± 0.09 0.181± 0.003
4 partial occurrences 0.268± 0.004 0.051± 0.003

Table 1 summarises the timing results for each combination of choices using
the two selected planners on the class diagram of Figure 1. Table 1 clearly
shows that using the negation of inconsistency rules for the desired goal gives
rise to an out of memory using FF. The negation of inconsistency rule cannot
be used as desired goal in Badger because this planner requires all the goals
to be completely instantiated, while the negation of inconsistency rule is based
on variables in the goal. Therefore, the remaining experiments only use the
negation of inconsistency occurrences as desired goal.

5.4. Comparison

To verify how both considered planners perform on larger models, we con-
ducted a series of experiments in which we artificially increased the size of the
example class diagram of section 4 in order to assess how this affects the time
needed to generate of a minimal resolution plan.

Adding isolated classes to the model.. To illustrate the advantage of using partial
models as opposed to complete models as initial state, we reran experiment 3
of Table 1, while artificially augmenting the size of the model by gradually
adding a number of isolated classes. The progression planner took more than 5
hours for 20 added isolated classes. When repeating the same experiment with
our regression planner, we observe that it outperforms the progression planner
with several orders of magnitude (Figure 2). For 20 added isolated classes, the
regression planner takes 1.21 seconds.

8



0.1 

1 

10 

100 

1000 

10000 

0 2 4 6 8 10 12 14 16 18 20 

Figure 2: Timing results for progression planning (blue circles) and regression
planning (red triangles) using a complete model (experiment 3 of Table 1. The y-
axis represents the time in seconds on a logarithmic scale. The x-axis represents
the number of isolated classes added to the initial model.

We performed a regression analysis to compare the growth with 5 different
models: a linear model, a quadratic model, and exponential model, a logarithmic
model and a power curve. Based on the results of this regression analysis, shown
in Table 2, we find that the results of FF grow more rapidly (the quadratic
and exponential model offer the best fit) than Badger: still the quadratic and
exponential model are the best fit but the parameter a is very small, implying
that the growth remains very slow, and close to linear, as can be confirmed by
a good R2 value for the linear model.

Table 2: Comparison of regression models on timing results of Figure 2.

Regression model R2 value for FF R2 value for Badger

linear: ax + b 0.769 (a = 790, 4) 0.975 (a = 0.0493)
exponential: b ∗ eax 0.979 (a = 0.3698) 0.994 (a = 0.0939)

power: b ∗ xa 0.887 (a = 2.563) 0.908 (a = 0.6531)
quadratic polynomial: ax2 + bx + c 0.981 (a = 80.84) 0.999 (a = 0.0015)

logarithmic: a ∗ ln(x)− b 0.469 (a = 4494) 0.757 (a = 0.3163)

Conclusion Exponential or
quadratic growth

Very slow growth,
very close to linear

Increasing the inheritance chain to the partial model.. We also reran experiment
4 of Table 1 for models of increasing size. As the introduction of isolated classes
does not affect the partial model used as initial state, the timing results remain
constant, irrespective of how many isolated classes are added. To assess the effect
of an increase of the size of the partial model on the time needed to compute

9



a resolution plan, we artificially augmented the size of the model by gradually
increasing the length of the inheritance chains involved in the inconsistency
occurrences of Figure 1. Figure 3 shows the timing results obtained with the
regression planner and the progression planner, after adding between 1 and 8
intermediate superclasses.

!"!#$

!"#$

#$

#!$

#!!$

!$ #$ %$ &$ '$ ($ )$ *$ +$

Figure 3: Timing results for adding intermediate superclasses to the partial
model using progression planning (blue circles) and regression planning (red
triangles). The y-axis represents the time in seconds on a logarithmic scale.

For this experiment, regression analysis reveals that the exponential model
is the best one for FF, whereas for Badger the quadratic model is better (though
the exponential is also still very good). The detailed results of R2 values of all
analysed regression models are given in Table 3.

Table 3: Comparison of regression models on timing results of Figure 3.

Regression model R2 value for FF R2 value for Badger

linear: ax + b 0.684 (a = 22.443) 0.956 (a = 0.0701)
exponential: b ∗ eax 0.994 (a = 0.1239) 0.991 (a = 0.3168)

power: b ∗ xa 0.947 (a = 0.1233) 0.959 (a = 1.0849)
quadratic polynomial: ax2 + bx + c 0.950 (a = 6.995) 0.999 (a = 0.0074)

logarithmic: a ∗ ln(x)− b 0.452 (a = 63.538) 0.780 (a = 0.2206)

Conclusion Exponential growth Quadratic (or expo-
nential) growth

Size of the goal.. Finally, we verified whether the number of inconsistency occur-
rences to be resolved affected the timing results. To achieve this, we restricted
the desired goal to generate resolution plans that resolve only 2 or 3 inconsis-
tency occurrences, without affecting the partial model of Figure 1.1 As we can

1We did not do this for 1 inconsistency occurrence only, as it would reduce the size of the
partial model, making the results uncomparable with what we found for 2 or 3 inconsistency

10



see in Figure 4, a reduction of the goal that does not affect the size of the partial
model does not have a significant impact on the performance. The growth rate
and timing results are still similar to what we found in Figure 3.

0.01	
  

0.1	
  

1	
  

10	
  

100	
  

1000	
  

0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
  

Badger	
  4	
  inconsistencies	
  

Badger	
  3	
  inconsistencies	
  

Badger	
  2	
  inconsistencies	
  

FF	
  4	
  inconsistencies	
  

FF	
  3	
  inconsistencies	
  

FF	
  2	
  inconsistencies	
  

Figure 4: Timing results for progression planning (blue circles) and regression
planning (red triangles) for a different number of inconsistency occurrences to
be resolved on a partial model. The y-axis represents the time in seconds on a
logarithmic scale. The x-axis represents the number of intermediate superclasses
added to the initial model.

6. Discussion of Results

From all these experiments, we can observe that the type of planner used
significantly affects the results. We compared the progression planner FF with
our own regression planner. While FF does the job, it suffers from scalability
and has very poor timing results.

We assume that the underlying reason is that FF appears to be optimized for
a range of problems in which the search tree is typically narrow and deep, and
in which negation is seldomly needed. For the purpose of model inconsistencies,
we require negation in the desired goal, and deal with search trees that are
wide (there are many actions to consider at each step) and shallow (the total
number of actions in the resolution plan is roughly proportional to the number
of inconsistency occurrences that need to be resolved).

Regression planners appear to perform significantly better for this type of
problem because they restrict the search space by excluding many irrelevant
actions. Moreover, since we implemented a regression planner ourselves in Pro-

occurrences.

11



log, we can still optimise it further to take into account specificities about the
problem domain.

Let’s discuss a number of points that require more thorough investigation.
Using inconsistency rules (as opposed to inconsistency occurrences) in the de-
sired goal leads to out of memory problems, as the search space becomes too
big. Nevertheless, a distinct advantage of inconsistency rules is that it enables
detection and resolution of inconsistencies at the same time. An approach based
on inconsistency occurrences requires a preliminary phase in which the incon-
sistency occurrences have been detected.

Providing the complete model as initial state may not be realistic, as it gives
out of memory errors because the search space becomes too big. Using a partial
model as input resolves this problem (at least in the experiments we carried
out).

Our experiments were based on a single case study (a small class diagram
with 4 inconsistency occurrences of two different types). The results of our
experiments may therefore be biased. A proper validation would require a wide
range of models, of varying sizes and using different metamodels. Note that the
automated planning approach does not depend on a particular metamodel, so
it is easy to apply it to the resolution of different types of models.

From a usability point of view, it is fairly straightforward to write a convertor
that automatically transforms models (and metamodels) into the logic format
required as input by the planner, and to output the resolution plan in the form
of a model transformation that is able to correct the inconsistent model. This
would avoid users of the approach to learn a new language.

Most automated planners suffer from lack of expressiveness. For example,
FF was unable to express transitive closure, primitive types and numbers. Our
regression planner in Prolog does not have this problem. Of course, one always
needs to find a trade-off between more expressiveness and better performance.
The more expressive, the wider range of inconsistencies that can be detected
and resolved, but the longer it may take to find a resolution plan (if at all).

7. Future Work

The current representation we used for specifying models (see Section 4)
was metamodel dependent: for each metamodel element (e.g. class), a Pro-
log predicate was defined, and model elements were represented as facts using
this predicate (e.g., class(c1,vehicle)). We are changing this internal rep-
resentation to make it metamodel independent, based on the work of Blanc et
al. [17]. They represent models as sequences of elementary model construction
operations, parameterised by the type of model element (e.g., add(class,c1),
addProperty(c1,name,vehicle)). Besides making the approach metamodel-
independent, it has several more advantages. First, the set of actions needed for
a particular metamodel can be generated automatically, taking into account the
metamodel constraints. Secondly, the operation-based representation of mod-
els uses basically the same format as the generated resolution plans. As such,

12



applying a resolution plan to a model becomes trivial. Thirdly, it will allows
us to use their Praxis framework offering an integration with modeling tools.
Praxis is an Eclipse plugin that uses EMF models and comes with: (i) a peer-to-
peer model editing framework [18]; (ii) an incremental inconsistency detection
tool [17]; and (iii) a model generator [19]. The incremental detection tool will
allow us to come up with an iterative resolution approach: whenever a resolu-
tion plan is proposed that introduces new inconsistencies, the detection tool will
come up with new inconsistency occurrences that can be resolved subsequently.
The model generator will allow us to assess the scalability of our approach, by
enabling the generation of useful models of arbitrary large size to be used for
our experiments.

Automated planners compute a resolution plan that is minimal in the num-
ber of actions to carry out to resolve all inconsistency occurrences. This does
not mean that the resolution plan is also unique. More generally speaking, a
minimal plan may not always be the most appropriate solution. In order to
investigate what is the most appropriate resolution plan, we should generate
all possible resolution plans (up to a certain size), and let the designer choose
the most appropriate one (based on some criteria to be defined, like minimality,
conceptual distance, monotonicity). The challenge here is to define the right
criteria to decide when a plan is more appropriate than another. User studies
will be needed to address this aspect.

In the planner approaches as currently proposed, we make use of sets of
primitive actions. In practice, and for larger plans, however, it is likely that
certain sequences or combinations of actions occur much more frequently than
others. As such we need to find a way to deal with composite actions, and take
them into account when proposing the most appropriate resolution plan.

As a final avenue of further research, Harman [20] advocates the use of
search-based approaches in software engineering. This includes a wide vari-
ety of different techniques and approaches such as metaheuristics, local search
algorithms, automated learning, genetic algorithms. We believe that these tech-
niques could be applied to the problem of model inconsistency management, as
it satisfies at least three important properties that motivate the need for search-
based software engineering: the presence of a large search space, the need for
algorithms with a low computational complexity, and the absence of known
optimal solutions.

8. Conclusion

In this article we addressed an important problem in the field of automated
software evolution, namely the automation of model inconsistency resolution.
For this purpose, we used automated planning, a logic-based approach originat-
ing from artificial intelligence. We are not aware of any other work having used
this technique for this particular purpose. We investigated and compared two
variants of automated planning: progression planning that performs a forward
state space search, and regression planning that searches backwards. We se-
lected (resp. implemented) a tool for each approach to compare their efficiency.

13



Our results show that a regression planner performs significantly better than
a regression planner. In the future, we will continue to improve this approach
to study and select the most appropriate resolution plan for a wide variety of
models.

Acknowledgements

This work has been partially supported by (i) the F.R.S. – FNRS through
FRFC project 2.4515.09 “Research Center on Software Adaptability”; (ii) re-
search project AUWB-08/12-UMH “Model-Driven Software Evolution”, an Ac-
tion de Recherche Concertée financed by the Ministère de la Communauté
française - Direction générale de l’Enseignement non obligatoire et de la Recherche
scientifique, Belgium; (iii) Avec le soutien de Wallonie - Bruxelles International
et du Fonds de la Recherche Scientifique, du Ministère Français des Affaires
étrangères et européennes, du Ministère de l’Enseignement supérieur et de la
Recherche dans le cadre des Partenariats Hubert Curien.

Vitae

Tom Mens obtained the degrees of Licentiate in Mathematics in 1992, Ad-
vanced Master in Computer Science in 1993 and PhD in Science in 1999 at
the Vrije Universiteit Brussel. He was a postdoctoral fellow of the Fund for
Scientific Research – Flanders (FWO) for three years. In 2003 he became a
lecturer at the Université de Mons, where he founded and directs a research lab
on software engineering. Since 2008 he is full professor. His main interest lies
in the underlying foundations of, and tool support for, evolving software. He
published numerous peer-reviewed articles on this topic in international jour-
nals and conferences. He has been co-organiser, program committee member
and reviewer of international symposia and workshops on model-driven soft-
ware engineering and software evolution. He is involved in several interuniver-
sity research projects and networks, and is founder and director of the ERCIM
Working Group on Software Evolution. In 2008 he co-edited the Springer book
“Software Evolution” with S. Demeyer. In 2011 he was PC chair of CSMR 2011.

Ragnhild Van Der Straeten is a postdoctoral researcher at the Vrije
Universiteit Brussel, Belgium. She has been working in the area of MDE for
more than seven years. She obtained her PhD at the Vrije Universiteit Brussel
(co-directed by Tom Mens) on the topic of inconsistency management in MDSD.
After that, she has published several scientific articles and a book chapter on
inconsistency management in MDSD, focussing on the use of formal method
support. She has been involved in research projects related to model-driven
engineering.

Jorge Pinna Puissant is a PhD student of Tom Mens, working in a re-
search project on Model- Driven Software Evolution. He studies the use of
artificial intelligence techniques, in particular automated planning techniques,
to analyse model inconsistencies.

14



References

[1] R. Van Der Straeten, T. Mens, S. Van Baelen, Challenges in model-driven
software engineering, in: M. Chaudron (Ed.), Models in Software Engi-
neering, Vol. 5421 of Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, 2009, pp. 35–47.

[2] G. Spanoudakis, A. Zisman, Inconsistency management in software engi-
neering: Survey and open research issues, in: Handbook of Software Engi-
neering and Knowledge Engineering, World scientific, 2001, pp. 329–380.

[3] T. Mens, R. Van Der Straeten, M. D’Hondt, Detecting and Resolving Model
Inconsistencies Using Transformation Dependency Analysis, in: Proc. Int’l
Conf. Model Driven Engineering Languages and Systems, Vol. 4199 of Lec-
ture Notes in Computer Science, Springer, 2006, pp. 200–214.

[4] C. Nentwich, W. Emmerich, A. Finkelstein, Consistency management with
repair actions., in: Proc. 25th Int’l Conf. Software Engineering, IEEE Com-
puter Society, 2003, pp. 455–464.

[5] T. Mens, R. Van Der Straeten, Incremental resolution of model inconsis-
tencies, in: Algebraic Description Techniques, Vol. 4409 of Lecture Notes
in Computer Science, Springer, 2007, pp. 111–127. doi:10.1007/978-3-540-
71998-4 7.

[6] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, H. Mei, Supporting auto-
matic model inconsistency fixing, in: Proc. ESEC/FSE 2009, ACM, 2009,
pp. 315–324.

[7] M. A. Almeida da Silva, A. Mougenot, X. Blanc, R. Bendraou, Towards
automated inconsistency handling in design models, in: Proc. CAiSE 2010,
Lecture Notes in Computer Science, Springer, 2010.

[8] A. Egyed, E. Letier, A. Finkelstein, Generating and evaluating choices for
fixing inconsistencies in UML design models, in: Proc. Int’l Conf. Auto-
mated Software Engineering, IEEE, 2008, pp. 99–108.

[9] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice
Hall, 2002.

[10] S. Jiménez Celorrio, Planning and learning under uncertainty, Ph.D. thesis,
Universidad Carlos III de Madrid (2010).

[11] R. Van Der Straeten, Inconsistency management in model-driven engineer-
ing: an approach using description logics, Ph.D. thesis, Vrije Universiteit
Brussel (2005).

[12] R. Fikes, N. J. Nilsson, STRIPS: A new approach to the application of
theorem proving to problem solving, in: Proc. Int’l Joint Conf. Artificial
Intelligence, 1971, pp. 608–620.

15



[13] E. P. D. Pednault, ADL: Exploring the middle ground between STRIPS
and the situation calculus, in: Proc. Int’l Conf. Principles of Knowledge
Representation and Reasoning, 1989, pp. 324–332.

[14] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, PDDL — the planning
domain definition language., Tech. Rep. DCS TR-1165, Yale Center for
Computational Vision and Control, New Haven, Connecticut (1998).

[15] J. Hoffmann, B. Nebel, The FF Planning System: Fast plan generation
through heuristic search, Journal of Artificial Intelligence Research 14
(2001) 253–302.

[16] I. Bratko, Prolog programming for artificial intelligence, Addison-Wesley,
2001.

[17] X. Blanc, A. Mougenot, I. Mounier, T. Mens, Detecting model inconsis-
tency through operation-based model construction, in: Proc. Int’l Conf.
Software Engineering (ICSE), Vol. 1, 2008, pp. 511–520.

[18] A. Mougenot, X. Blanc, M.-P. Gervais, D-praxis: A peer-to-peer collab-
orative model editing framework, in: Proceedings of the 9th IFIP WG
6.1 International Conference on Distributed Applications and Interopera-
ble Systems, DAIS ’09, Springer-Verlag, 2009, pp. 16–29.

[19] A. Mougenot, A. Darrasse, X. Blanc, M. Soria, Uniform random genera-
tion of huge metamodel instances, in: Proceedings of the 5th European
Conference on Model Driven Architecture - Foundations and Applications,
ECMDA-FA ’09, Springer-Verlag, 2009, pp. 130–145.

[20] M. Harman, Search based software engineering, in: Computational Science
- ICCS 2006, Vol. 3994 of Lecture Notes in Computer Science, Springer,
2006, pp. 740–747.

16


